The neuronal and molecular basis of quinine-dependent bitter taste signaling in Drosophila larvae
نویسندگان
چکیده
The sensation of bitter substances can alert an animal that a specific type of food is harmful and should not be consumed. However, not all bitter compounds are equally toxic and some may even be beneficial in certain contexts. Thus, taste systems in general may have a broader range of functions than just in alerting the animal. In this study we investigate bitter sensing and processing in Drosophila larvae using quinine, a substance perceived by humans as bitter. We show that behavioral choice, feeding, survival, and associative olfactory learning are all directly affected by quinine. On the cellular level, we show that 12 gustatory sensory receptor neurons that express both GR66a and GR33a are required for quinine-dependent choice and feeding behavior. Interestingly, these neurons are not necessary for quinine-dependent survival or associative learning. On the molecular receptor gene level, the GR33a receptor, but not GR66a, is required for quinine-dependent choice behavior. A screen for gustatory sensory receptor neurons that trigger quinine-dependent choice behavior revealed that a single GR97a receptor gene expressing neuron located in the peripheral terminal sense organ is partially necessary and sufficient. For the first time, we show that the elementary chemosensory system of the Drosophila larva can serve as a simple model to understand the neuronal basis of taste information processing on the single cell level with respect to different behavioral outputs.
منابع مشابه
Regulation of Adipogenesis by Quinine through the ERK/S6 Pathway.
Quinine is a bitter tasting compound that is involved in the regulation of body weight as demonstrated in in vivo animal models and in vitro models of the adipogenic system. Arguments exist over the positive or negative roles of quinine in both in vivo animal models and in vitro cell models, which motivates us to further investigate the functions of quinine in the in vitro adipogenic system. To...
متن کاملRats fail to discriminate quinine from denatonium: implications for the neural coding of bitter-tasting compounds.
Recent molecular findings indicate that many different G-protein-coupled taste receptors that bind with "bitter-tasting" ligands are coexpressed in single taste receptor cells in taste buds, leading to the prediction that mammals can respond behaviorally to structurally diverse "bitter" tastants but cannot discriminate among them. However, recent in situ calcium-imaging findings imply that rat ...
متن کاملSingle neurons in the nucleus of the solitary tract respond selectively to bitter taste stimuli.
Molecular data suggest that receptors for all bitter ligands are coexpressed in the same taste receptor cells (TRCs), whereas physiological results indicate that individual TRCs respond to only a subset of bitter stimuli. It is also unclear to what extent bitter-responsive neurons are stimulated by nonbitter stimuli. To explore these issues, single neuron responses were recorded from the rat nu...
متن کاملSingle Neurons in the Nucleus of the Solitary Tract (nst) Respond Selectively to Bitter Taste Stimuli
Molecular data suggest that receptors for all bitter ligands are coexpressed in the same taste receptor cells (TRCs) while physiological results indicate that individual TRCs respond only to a subset of bitter stimuli. It is also unclear to what extent bitter-responsive neurons are stimulated by non-bitter stimuli. To explore these issues, single neuron responses were recorded from the rat nucl...
متن کاملDrosophila Fatty Acid Taste Signals through the PLC Pathway in Sugar-Sensing Neurons
Taste is the primary sensory system for detecting food quality and palatability. Drosophila detects five distinct taste modalities that include sweet, bitter, salt, water, and the taste of carbonation. Of these, sweet-sensing neurons appear to have utility for the detection of nutritionally rich food while bitter-sensing neurons signal toxicity and confer repulsion. Growing evidence in mammals ...
متن کامل